AFCI/NEAMS Nuclear Fuel Performance Integrated Code Project

NEAMS Fuel IPSC Team 20 Aug 2009

Click to edi

Relationship of NEAMS Program Elements

NEAMS Fuel Performance Integrated Code Project Overview

- Click to edit the outline text format
- Second Outline Level

- Click to edit the outline text format
- Second Outline Level
- Third Outline Level

\$bird

What's missing from that picture?

geometry and mesh issues

- different resolution meshes for different physics
- different types of meshes for different physics
 - unstructured, Cartesian AMR, etc.

numerical issues

required degree of coupling between physics

Tet mesh on curved geometry with source ሮሮ፫፣ field quantities

Hex mesh on the same geometry with conservative cell mapped field

Managed by UT-Friendes stepping for the U.S. Department egy stepping

TP1: Fuel-Clad Gap Closure in Metal Fuels

TP5: Species transport - metal fuel

- LANL developing species transport component (PEDERNAL)
 - coupled heat transport and species mass diffusion-reaction $\frac{\partial \rho h}{\partial t} = \nabla \cdot K(T, \vec{\phi}) \nabla T + q(T, \vec{\phi}),$
 - parallel (MPI)

- advanced discreti $\frac{\partial \phi_i}{\partial t} = \nabla \cdot [D(T, \vec{\phi}) \nabla \phi_i + S(T, \vec{\phi}) \nabla T] + p_i(T, \vec{\phi}), i = 1, ..., n.$
 - unstructured 3D meshes
 - · mimetic FD, mixed-hybrid FE
- advanced time integration
 - fully-coupled 2nd order implicit (BDF2)
 - · adaptive step sizes from a priori local time error estimates
- advanced nonlinear solver
 - · nonlinear Krylov accelerated inexact Newton (not JFNK)

TP2: FCMI Simulation of Oxide Fuel Pellet

TP3: Power & Mechanics in a BWR Bundle

TP4: 3D Flow Effects - BFBT

Summary of approach

- develop 3D thermomechanics, neutronics, flow capability
 - initially prototype based on existing code(s)
 - ultimately componentbased mesh-centric design, in collaboration with CT Program Element
- incorporate sub-grid models
 - initially using existing models
- incorporate improved sub
 11 Managed by UT- Grid models based on FOA for the U.S. Department of Energy

and later FMM Program

